ORGANIC LETTERS

2011 Vol. 13, No. 13 3356–3359

Concise Total Synthesis of Calothrixins A and B

Takumi Abe,[†] Toshiaki Ikeda,[†] Reiko Yanada,[‡] and Minoru Ishikura*,[†]

Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan, and Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan

ishikura@hoku-iryo-u.ac.jp

Received April 27, 2011

The concise total synthesis of calothrixins A and B has been accomplished by utilizing the one-pot formation of hexatriene as a key intermediate via the palladium-catalyzed tandem cyclization/cross-coupling reaction of triethyl(indol-2-yl)borate. In another key transformation, the indolo-[3,2-j]phenanthridine core was prepared in high yield via Cu(I)-mediated 6π -electrocyclization.

Calothrixins A (1) and B (2), first isolated from cyanobacterium of the genus *Calothrix* in 1999, ¹ are characterized by a unique indolo[3,2-*j*]phenanthridine core, bearing indole, quinoline, and quinone moieties (Figure 1). Both 1 and 2 inhibit the chloroquinone-resistant strain of malaria parasite *Plasmodium falciparum* and show antiproliferative properties against several cancer cell lines as well as human DNA topoisomerase I poisoning activity. ² Owing to their intriguing structural features and potential biological activity, 1 and 2 are attractive targets for total synthesis. Beginning with the first total synthesis employing

ortholithiation methods by Kelly in 2000,³ several approaches to synthesizing 1 and 2 have been developed,⁴ including the biomimetic total synthesis of 2 reported independently by Hibino's and Moody's groups.⁵

In our ongoing studies of trialkyl(indol-2-yl)borates,⁶ we previously found that indolylborates show high reactivity in palladium-catalyzed cross-coupling reactions, such as

[†] Health Sciences University of Hokkaido.

[‡] Hiroshima International University.

⁽¹⁾ Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; de Chazal, N. M.; Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. *Tetrahedron* **1999**, *55*, 13513–13520.

^{(2) (}a) Bernardo, P. H.; Chai, C. L. L.; Heath, G. A.; Mahon, P. J.; Smith, G. D.; Waring, P.; Wilkes, B. A. *J. Med. Chem.* **2004**, *47*, 4958–4963. (b) Khan, Q. A.; Lu, J.; Hecht, S. M. *J. Nat. Prod.* **2009**, *72*, 438–442.

⁽³⁾ Kelly, T. R.; Zhao, Y.; Cavero, M.; Torneiro, M. Org. Lett. 2000, 2, 3735–3737.

^{(4) (}a) For a review, see: Choshi, T.; Hibino, S. *Heterocycles* **2009**, 77, 85–97. (b) Tohyama, S.; Choshi, T.; Matsumoto, K.; Yamabuki, A.; Hieda, Y.; Nobuhiro, J.; Hibino, S. *Heterocycles* **2010**, 82, 397–416. (c) Bennasar, M.-L.; Roca, T.; Ferrando, F. *Org. Lett.* **2006**, 8, 561–564. (d) Bernardo, P. H.; Chai, C. L. L. *J. Org. Chem.* **2003**, 68, 8906–8909. (e) Bernardo, P. H.; Chai, C. L. L.; Elix, J. A. *Tetrahedron Lett.* **2002**, 43, 2939–2940. (f) Sissouma, D.; Maingot, L.; Collet, S.; Guingant, A. *J. Org. Chem.* **2006**, 71, 8434–8389. (g) Tohyama, S.; Choshi, T.; Matsumoto, K.; Yamabuki, A.; Ikegata, K.; Nobuhiro, J.; Hibino, S. *Tetrahedron Lett.* **2005**, 46, 5263–5264.

^{(5) (}a) McErlean, C. S. P.; Sperry, J.; Blake, A. J.; Moody, C. J. *Tetrahedron* **2007**, *63*, 10963–10970. (b) Sperry, J.; McErlean, C. S. P.; Slawin, A. M. Z.; Moody, C. J. *Tetrahedron Lett.* **2007**, *48*, 231–234. (c) Yamabuki, A.; Fujinawa, H.; Choshi, T.; Tohyama, S.; Matsumoto, K.; Ohnuma, K.; Nobuhiro, J.; Hibino, S. *Tetrahedron Lett.* **2006**, *47*, 5859–5861.

⁽⁶⁾ For a review, see: Ishikura, M. Heterocycles 2011, 83, 247-273.

Figure 1. Calothrixins A (1) and B (2).

carbonylative cross-coupling⁷ and tandem cyclization/cross-coupling reactions, ⁸ although tetravalent organoboron compounds (ate complexes) have proven to be less practical for the palladium-catalyzed cross-coupling reactions. ⁹ Herein, we describe a new approach to synthesizing 1 and 2 via the palladium-catalyzed tandem cyclization/cross-coupling reaction of triethyl(indol-2-yl)borate; this approach employs one-pot construction of a hexatriene as a key intermediate in building the indolophenanthridine core.

The retrosynthetic analysis of **2** is shown in Scheme 1. We envisioned that the palladium-catalyzed cyclization/cross-coupling reaction of indolylborate **6** (generated in situ from the corresponding indole) with bromide **7** could be used to generate hexatriene **5** in a one-pot procedure, and that **5** could then be easily transformed into the indolophenanthridine **4** through 6π -electrocyclization. Subsequently, **4** would be converted into calothrixin B (**2**) through quinone **3**.

Scheme 1. Retrosynthetic Analysis of Calothrixin B (2)

The preparation of the requisite bromide 7 is outlined in Scheme 2. The Sonogashira coupling reaction of

Scheme 2. Prepation of Vinyl Bromide 7

2-iodoaniline with 2-(prop-2-yn-1-yloxy)tetrahydro-2*H*-pyran in the presence of PdCl₂(PPh₃)₂ (3 mol %) and CuI (10 mol %) in Et₂NH at 40 °C for 1 h easily produced 8 in 80% yield. *N*-Acetylation of 8 with AcCl in CH₂Cl₂ afforded amide 9 in 85% yield, and the subsequent

Table 1. Palladium-Catalyzed Tandem Cyclization/Cross-Coupling Reaction of **6** with **7**

		yield $(\%)^b$	
entry	${\rm conditions}^a$	5	11
1	Pd(OAc) ₂ (5 mol %), 0.5 h	42	5
2	Pd(OAc) ₂ (5 mol %), P(o-tol) ₃ (10 mol %),	55	8
	0.5 h		
3	$PdCl_{2}[P(o-tol)_{3}]_{2}$ (5 mol %), 0.5 h	60	8
4	PdCl ₂ (PPh ₃) ₂ (5 mol %), 2 h	20	7
5	Pd ₂ (dba) ₃ •CHCl ₃ (2.5 mol %)	50	6
6	Pd₂(dba)₃•CHCl₃ (2.5 mol %),	18	7
	PPh ₃ (10 mol %), 0.5 h		
7	Pd ₂ (dba) ₃ •CHCl ₃ (2.5 mol %),	68	5
	P(o-tol) ₃ (10 mol %), 0.5 h		

^a Borate **6** [derived in situ from **10** (2 mmol), n-BuLi (2.4 mmol), and BEt₃ (2.4 mmol) in THF under an argon atmosphere] was treated with bromide **7** (1 mmol) in the presence of a Pd complex (5 mol %). ^b Isolated yield based on **7**.

Org. Lett., Vol. 13, No. 13, 2011

⁽⁷⁾ Ishikura, M.; Terashima, M. J. Org. Chem. **1994**, *59*, 2634–2637. (8) Ishikura, M.; Takahashi, N.; Yamada, K.; Yanada, R. *Tetrahedron* **2006**, *62*, 11580–11591.

^{(9) (}a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. *J. Am. Chem. Soc.* **1985**, *107*, 972–980. (b) Negishi, E.; Takahashi, T.; Baba, S.; van Horn, D. E.; Okukado, N. *J. Am. Chem. Soc.* **1987**, *109*, 2393–2401. (c) Sharma, S.; Oehlschlager, A. C. *Tetrahedron Lett.* **1988**, *29*, 261–264.

treatment of **9** with NaH and 2,3-dibromopropene in THF gave bromide **7** in 80% yield.

The synthesis of **2** began with the palladium-catalyzed tandem cyclization/cross-coupling reaction of indolylborate **6** with **7**.

The treatment of **6** [generated *in situ* from 1-methoxyindole (**10**) and *n*-BuLi in THF, followed by treatment with BEt₃] with **7** in the presence of a palladium complex (5 mol %) in THF at 60 °C under an argon atmosphere produced triene **5** and a small amount of vinyl indole **11** (Table 1).

Scheme 3. Catalytic Cycle

Catalyst evaluation revealed that the presence of a bulky P(o-tol)₃ ligand was important for the successful Pd-catalyzed cross-coupling reaction of **6** with **7**. When the reaction was carried out using Pd(OAc)₂ (5 mol %), **5** was obtained in 42% yield along with a small amount of **11** (5%) (entry 1). The combination of Pd(OAc)₂ with 2P-(o-tol)₃ increased the yield of **5** to 55% (entry 2). As compared with the reaction using PdCl₂[P(o-tol)₃]₂ that produced **5** in 60% yield, the reaction using PdCl₂(PPh₃)₂ was slower and produced **5** in a low yield of 20% (entries 3 and 4). The reaction using Pd₂(dba)₃•CHCl₃ (2.5 mol %) in conjunction with P(o-tol)₃ (10 mol %) resulted in the highest yield of **5** (68%) along with a small amount of **11** (5%)

(entry 7); 5 was obtained in 18% and 50% yields in the presence of Pd₂(dba)₃•CHCl₃ (2.5 mol %) with and without PPh₃, respectively (entries 5 and 6).

The proposed catalytic cycle is shown in Scheme 3. The coordination of the bulky $P(o\text{-tol})_3$ ligand to Pd shifts the equilibrium between tetracoordinate complex **A** and tricoordinate complex **B** toward the less crowded complex **B**. ¹⁰ The transfer of the indole ring from indolylborate **6** to the Pd of complex **B** promptly occurs, leading to **5** via complex **C**.

Scheme 4. Total Synthesis of Calothrixins A (1) and B (2)

After removal of the *O*-THP group of **5** with CSA (camphorsulfonic acid) in MeOH/CH₂Cl₂ (5:1), the construction of indolophenanthridine **4** via cyclization of hexatriene **12** was investigated (Scheme 4). As our previous work in this area indicated that **12** should photochemically cyclize to **4**, the irradiation of **12** with a high-pressure mercury lamp in benzene was first carried out. However, the reaction produced only a complex mixture. In addition, the thermal reaction was attempted to convert **12** to **4**,

3358 Org. Lett., Vol. 13, No. 13, 2011

^{(10) (}a) Paul, F.; Patt, J.; Hartwig, J. F. *Organometallics* **1995**, *14*, 3030–3039. (b) Amator, C.; Jutand, A. *J. Organomet. Chem.* **1999**, *576*, 254–278. (c) Galardon, E.; Ramdeehul, S.; Brown, J. M.; Cowley, A.; Hii, K. K.; Jutand, A. *Angew. Chem., Int. Ed.* **2002**, *41*, 1760–1763. (d) Landeros, F. B.; Hartwig, J. F. *J. Am. Chem. Soc.* **2005**, *127*, 6944–6945. (e) Negishi, E.; Liu, F. *Metal-Catalyzed Cross-coupling Reactions*; Diederich, F., Stang, J. F., Eds.; Wiley-VCH: Weinheim, Germany, 1997; pp 1–47.

⁽¹¹⁾ Ishikura, M.; Takahashi, N.; Yamada, K.; Abe, T.; Yanada, R. Helv. Chim. Acta 2008, 91, 1828–1837.

without success. Although many examples of 6π -electrocyclization have been reported, we sought out the feasibility of the Lewis acid mediated cyclization sequence. After screening various Lewis acids such as $In(OTf)_3$, $[IrCpCl_2]_2$, $ZnBr_2$, and $TiCl_4$, we found that a $(CuOTf)_2$ -toluene complex was effective in promoting the proposed cyclization. Treating 12 with the $(CuOTf)_2$ -toluene complex (1 equiv) in MeCN at room temperature for 1 h produced 4 in 83% yield. Moreover, the reaction worked well using a catalytic amount of the $(CuOTf)_2$ -toluene complex (10 mol %) in MeCN under reflux for 16 h, giving 4 in 72% yield. Although there are some examples of CuOTf-mediated olefin photocycloaddition reactions, to our knowledge, use of Cu(OTf) as a mediator for 6π -electrocyclization is unprecedented.

With pentacycle 4 in hand, the subsequent conversion of 4 to calothrixin B (2) was achieved in a three-step sequence (Scheme 4). The oxidation of the primary alcohol of 4 with PCC in CH_2Cl_2 readily gave aldehyde 13 in 80% yield. At

this stage, we found that Dakin oxidation¹⁵ of **13** [30% H₂O₂, (PhSe)₂ (10 mol %), and then 10% NaOH under O₂] led to the one-pot production of quinone **3** in 53% yield and aldehyde **14** in 18% yield, accompanied by in situ *N*-Ac deprotection and oxidation. Aldehyde **14** was transformed into **3** in 67% yield by oxidation with (PhSe)₂ (30 mol %) and 30% H₂O₂ in CH₂Cl₂ at room temperature for 48 h. Finally, the *N*-OMe group of **3** was easily removed by catalytic hydrogenation over 10% Pd/C in AcOEt, providing calothrixin B (**2**) in 85% yield. Furthermore, the oxidation of **2** by treatment with dimethyl dioxirane, ¹⁶ prepared in situ from oxone and acetone in the presence of K₂CO₃, at room temperature for 16 h gave calothrixin A (**1**) in 70% yield.

In summary, we have demonstrated a new approach to synthesizing calothrixins A (1) and B (2) through the palladium-catalyzed tandem cyclization/cross-coupling reaction of indolylborate 6 by taking advantage of the one-pot generation of the key intermediate 5 for constructing indolophenanthridine 4. In addition, the unprecedented use of CuOTf for the 6π -electrocyclization of 12 to 4 was developed. Further synthetic studies of this cross-coupling protocol are in progress.

Acknowledgment. This work was supported in part by the Ministry of Education, Culture, Sports, Sciences and Technology of Japan through a Grant-in Aid for Scientific Research (No. 22590010).

Supporting Information Available. Experimental procedures and characterization data for products and isolated intermediates. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 13, No. 13, 2011

⁽¹²⁾ For some examples of 6π -electrocyclization, see: (a) Hayashi, R.; Walton, M. C.; Hsung, R. P.; Schwab, J. H.; Yu, X. *Org. Lett.* **2010**, *12*, 5768–5771. (b) Sofiyev, V.; Navarro, G.; Trauner, D. *Org. Lett.* **2008**, *10*, 149–152. (c) Kan, S. B. J.; Anderson, E. A. *Org. Lett.* **2008**, *10*, 2323–2326. (d) Hulot, C.; Blong, G.; Suffert, J. *J. Am. Chem. Soc.* **2008**, *13*, 5046–5047. (e) Desimoni, G.; Tacconi, G.; Barco, A.; Polloni, G. P. *Natural Products Synthesis Through Pericyclic Reactions*; American Chemical Society: Washington, DC, 1983; Chapter 9, pp 361–409.

^{(13) (}a) Ishikura, M.; Hino, A.; Yaginuma, T.; Agata, I.; Katagiri, N. *Tetrahedron* **2000**, *56*, 193–207. (b) Bishop, L. M.; Barbarow, J. E.; Bergman, R. G.; Trauner, D. *Angew. Chem., Int. Ed.* **2008**, *47*, 8100–8103. (c) Tantillo, D. J. *Angew. Chem., Int. Ed.* **2009**, *48*, 31–32.

^{(14) (}a) Hertel, R.; Mattay, J.; Runsink, J. J. Am. Chem. Soc. 1991, 113, 657–665. (b) Langer, K.; Mattay, J. J. Org. Chem. 1995, 60, 7256–7266. (c) Ghosh, S.; Patra, D.; Samajdar, S. Tetrahedron Lett. 1996, 37, 2073–2076. (d) Banerjee, S.; Ghosh, S. J. Org. Chem. 2003, 68, 3981–3989. (e) Salomon, R. G. Tetrahedron 1983, 39, 485–575. (f) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 1889–1897.

^{(15) (}a) Stewart, J. D. *Curr. Org. Chem.* **1998**, *2*, 195–216. (b) Bol, C.; Beckmann, O.; Luong, T. K. K. *Metal-catalyzed Baeyer-Villiger Reactions*; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; pp 213–218. (c) Syper, L.; Mlochowski, J. *Tetrahedron* **1987**, *43*, 207–213. (d) Syper, L. *Synthesis* **1989**, 167–172.

⁽¹⁶⁾ Adam, W.; Saha-Möller, C. R.; Zhao, C. G. Org. React. 2002, 61, 219–516.